سفارش تبلیغ
صبا ویژن
حکمت گمشده مؤمن است، پس باید آن را بطلبد؛ حتی اگر در دست شروران باشد . [امام علی علیه السلام]
شیمی
 RSS 
خانه
ایمیل
شناسنامه
مدیریت وبلاگ
کل بازدید : 38902
بازدید امروز : 1
بازدید دیروز : 0
........... درباره خودم ...........
شیمی
مدیر وبلاگ : حمید رضا شاپورآبادی[12]
نویسندگان وبلاگ :
ehsan helli[0]

شیمی جدول تناوبی علم

........... لوگوی خودم ...........
شیمی
............. بایگانی.............
شیمی
پاییز 1386

........... دوستان من ...........
دوستان ریاضی

......... لوگوی دوستان من .........


............. اشتراک.............
  ........... طراح قالب...........


  • جدول

  • نویسنده : حمید رضا شاپورآبادی:: 86/8/28:: 10:43 صبح
    Periodic table poster / wall chart
    نظرات شما ()

  • جدول پروفسور مندلیف

  • نویسنده : حمید رضا شاپورآبادی:: 86/8/28:: 10:43 صبح
    Periodic table photo poster / wall chart
    نظرات شما ()

  • عدد کوانتومی

  • نویسنده : حمید رضا شاپورآبادی:: 86/8/16:: 9:44 صبح

    اطلاعات اولیه

    در بررسی ساختار اتم مدلهای مختلفی ارائه شده است. ابتدایی‌ترین این مدلها ، مدل سیاره‌ای رادرفورد است. بعد از مدل سیاره‌ای رادرفورد ، نیلز بوهر مدل جدیدی را ارائه داد (مدل اتمی بوهر). این مدل می‌‌توانست ساختار طیفی اتم هیدروژن را توضیح دهد. در اصل موضوع بوهر که اساس و مبنای مدل بوهر است، فرض می‌‌شود که الکترونها مقیدند در مدارهایی حرکت کنند که در آنها اندازه حرکت الکترون مضرب درستی از h/2π باشد که h ثابت پلانک است. همچنین در این مدل فرض می‌‌شود که ترازهای انرژی کوانتیده‌اند. بعدها که ساختار طیف مربوط به عناصر مختلف مورد توجه قرار گرفت، انرژی هر الکترون در اتم با یک سری اعداد که به عنوان اعداد کوانتومی معروف هستند، مشخص کردند.

    اعداد کوانتومی اصلی

    گفتیم که ترازهای انرژی در اتم گسسته هستند. این امر به این معنی است که اگر اتم توسط تابش الکترومغناطیسی بمباران شود، تابش توسط الکترونها جذب می‌‌شود. لذا الکترونها از ترازهای اولیه یا پایه خود تحریک شده و به ترازهای برانگیخته می‌‌روند، اما چون این حالت یک حالت ناپایدار است، لذا الکترون با گسیل تابش از تراز برانگیخته به تراز اولیه خود برمی‌‌گردد. مقدار انرژی جذب شده یا گسیل شده متناسب با فاصله ترازهای انرژی است، یعنی اگر انرژی تراز اولیه را با E و انرژی تراز برانگیخته را با ΄E مشخص کنیم، در این صورت فرکانس نور گسیل شده یا تحریک شده از رابطه E - E΄ = hv حاصل می‌‌شود.

    از طرف دیگر ، چون طبق اصل موضوع بوهر ، اندازه حرکت الکترون باید مضرب صحیحی از h/2π باشد، بنابراین اگر با تقریب مدار حرکت الکترون به دور هسته را دایره‌ای به شعاع r فرض کنیم، در این صورت nh/2π خواهد بود که در این رابطه v سرعت الکترون و m جرم آن است. همچنین با توجه به این که نیروی وارد شده از طرف هسته بر الکترون نیروی مرکزی است، لذا اگر بار هسته را برابر ze بگیریم که در آن z عدد اتمی است، مقدار نیروی وارد بر الکترون برابر ze2/r2 = mv2/r خواهد بود. از ترکیب این روابط می‌‌توان مقدار انرژی الکترون در هر تراز اتمی را بدست آورد.

    در این صورت انرژی از رابطه: E = 1/2mc2/(zα)2 بدست می‌آید که در این رابطه α مقدار ثابتی است که برابر α = 1/137 e2/ћc بوده و ثابت ساختار ریز نامیده می‌‌شود. مقدار n که در رابطه انرژی ظاهر شده است، عدد کوانتومی اصلی نامیده می‌‌شود. البته می‌‌توان مقدار انرژی الکترون در هر تراز را از حل معادله شرودینگر محاسبه کرد. در این صورت نیز رابطه انرژی الکترون در هر تراز برحسب یک عدد کوانتومی که به عدد کوانتومی اصلی معروف است، مشخص می‌‌شود.



    img/daneshnameh_up/6/6f/C3_quant_01.JPG

    عدد کوانتومی اندازه حرکت زاویه‌ای مداری

    نظریه اتم تک الکترونی بوهر عدد کوانتومی اصلی n را معرفی می‌‌کند که مقدار درست آن انرژی کل اتم را مشخص می‌‌کند. عدد کوانتومی n که یک عدد صحیح و مثبت است، بزرگی اندازه حرکت زاویه‌ای الکترون به دور هسته را بر اساس اصل موضوع بوهر ، طبق رابطه L = nћ مشخص می‌‌کند. ћ عدد ثابتی است که بصورت نسبت ثابت پلانک بر عدد 2π تعریف می‌‌شود، اما از دیدگاه مکانیک موجی درست نیست که برای الکترون یک مسیر مشخص دایره‌ای یا شکل دیگری را در نظر بگیریم. (اصل عدم قطعیت مانع این کار است) و نیز از این دیدگاه قاعده بوهر در مورد کوانتش بزرگی اندازه حرکت زاویه‌ای درست نیست.

    بر خلاف نظریه کلاسیک ، مکانیک موجی نشان می‌‌دهد که بزرگی اندازه حرکت زاویه‌ای مداری (L) یک دستگاه اتمی کوانتیده است و مقادیر ممکن آن می‌‌تواند از رابطه: L = (l(l + 1))1/2ћ بدست آید. در این رابطه l عدد صحیحی است که عدد کوانتومی ‌اندازه حرکت زاویه‌ای مداری نامیده می‌‌شود. برای مقدار مفروض از عدد کوانتومی ‌اصلی n ، مقادیر ممکن l ، اعداد درست از صفر تا n - 1 خواهد بود. به عنوان مثال ، اگر n = 2 باشد، در این صورت l می‌‌تواند مقادیر (1,0) را اختیار کند.

    در نمادگذاری ترازها هر مقدار از l با یک حرف مشخص می‌‌شود. در این نمادگذاری مقدار l = 0 با حرف S و l = 1 با حرف l = 2 ، P با حرف D و ... مشخص می‌‌شود. چون انرژی فقط برحسب عدد کوانتومی ‌اصلی مشخص می‌‌شود، بنابراین در مورد تک الکترونی که تحت تأثیر یک نیروی کولنی از جانب هسته است و در تراز n = 3 قرار دارد، هر سه حالت l = 0 , 1 , 2 دارای انرژی یکسانی خواهند بود.



    img/daneshnameh_up/7/73/C3_quant_03.JPG

    اعداد کوانتومی ‌مغناطیسی مداری

    گفتیم که الکترون در اثر نیرویی که از طرف هسته بر آن وارد می‌‌شود، حول هسته می‌‌چرخد. چون الکترون یک ذره باردار است، بنابراین مدار الکترون را می‌‌توان یک مدار مغناطیسی در نظر گرفت. برای این مدار مغناطیسی و در واقع برای الکترون می‌‌توان یک گشتاور دو قطبی مغناطیسی تعریف نمود. این کمیت بر اساس اندازه حرکت زاویه‌ای مداری الکترون تعریف می‌‌شود. یعنی از رابطه μ = eL/2m حاصل می‌‌شود که در آن μ گشتاور دو قطبی مغناطیسی است.

    حال اگر یک میدان مغناطیسی خارجی اعمال شود، در این صورت میدان سعی می‌‌کند تا گشتاور دو قطبی مغناطیسی و به تبع آن L را در راستای میدان قرار دهد، اما در مکانیک موجی بردار اندازه حرکت زاویه‌ای مداری L نمی‌‌تواند هر جهتی را نسبت به میدان مغناطیسی اختیار کند، بلکه محدود به جهتهای به خصوصی است که برای آن مؤلفه بردار اندازه حرکت زاویه مداری ، در راستای میدان مغناطیسی ، مضرب دستی از ћ باشد. بنابراین اگر جهت میدان مغناطیسی را در راستای محور z اختیار کنیم، در این صورت مؤلفه z بردار L از رابطه Lz = ml ћ حاصل می‌‌شود. در این رابطه ml عدد کوانتومی ‌مغناطیسی مداری است. به ازای یک مقدار مفروض l ، m_l می‌‌تواند مقادیر زیر را اختیار کند:


    {ml ={ l , l - 1 , l - 2 , … , 0 , … , - l




    img/daneshnameh_up/3/31/img122.JPGimg/daneshnameh_up/d/d0/img1610.JPG

    عدد کوانتومی ‌مغناطیسی اسپینی

    در نظریه کوانتومی ‌سه ثابت فیزیک کلاسیک مربوط به حرکت ذره‌ای که تحت تأثیر جاذبه عکس مجذوری قرار دارد، کوانتیده‌اند. این سه ثابت عبارتند از: انرژی ، بزرگی اندازه حرکت زاویه‌ای مداری ، مؤلفه اندازه حرکت زاویه‌ای مداری در یک جهت ثابت از فضا. در مکانیک کوانتومی ‌به این ثابتهای حرکت اعداد کوانتومی n و l و ml نسبت داده می‌‌شوند، اما علاوه بر این سه عدد کوانتومی ، عدد کوانتومی ‌دیگری به نام عدد کوانتومی ‌اسپینی که به مفهوم اسپین الکترون مربوط است، معرفی می‌‌شود.

    در سال 1925/1304 گود اسمیت و اوهلن یک اظهار داشتند که یک اندازه حرکت زاویه‌ای ذاتی ، کاملا مستقل از اندازه حرکت زاویه‌ای مداری ، به هر الکترون وابسته است. این اندازه حرکت ذاتی ، اسپین الکترون نامیده می‌‌شود. چون می‌‌توان آن را با اندازه حرکت ذاتی که هر جسم گسترده بر اساس دوران یا اسپین حول مرکز جرم خود دارد، مانسته داشت. البته لازم به توضیح است که در مکانیک موجی تلقی الکترون به عنوان یک کره ساده با بار الکتریکی صحیح نیست، بلکه صرفا به خاطر مشخص کردن اندازه حرکت زاویه‌ای اسپینی الکترون به کمک مدل قابل تجسم ، بهتر است که آن را به عنوان جسمی که در فضا دارای گسترش است و بطور پیوسته حول یک محور به دور خود می‌‌چرخد، فرض کنیم.



    img/daneshnameh_up/7/79/C3_quant_04.JPG




    مانند اندازه حرکت زاویه‌ای مداری در اینجا نیز می‌‌توانیم یک گشتاور مغناطیسی مربوط به حرکت اسپینی الکترون در نظر بگیریم. چنانچه یک الکترون ، با گشتاور مغناطیسی دائمی خود ، در یک میدان مغناطیسی قرار گیرد، انتظار می‌‌رود که اسپین آن کوانتیده فضایی باشد، یعنی گشتاور مغناطیسی اسپینی و اندازه حرکت زاویه‌ای اسپینی به سمت گیری‌های خاصی محدود خواهند بود.

    بنابراین اگر میدان مغناطیسی در راستای محور z فرض شود، در این صورت مؤلفه اندازه حرکت زاویه‌ای اسپینی Lsz در جهت این میدان از رابطه Lsz = msћ حاصل خواهد شد. در این رابطه ms عدد کوانتومی ‌مغناطیسی اسپینی نامیده می‌‌شود. از آنجا که الکترون از دسته فرمیونها می‌‌باشد، بنابراین دارای اسپین نیم فرد خواهد بود، لذا عدد کوانتومی ms فقط می‌‌تواند دو مقدار ممکن 2/1+ و 2/1- را اختیار کند.

    نظرات شما ()

  • طیف سنجی جرمی

  • نویسنده : حمید رضا شاپورآبادی:: 86/8/7:: 8:37 صبح

    تاریخچه
    اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر می‌گردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونه‌ای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند. تا جایی که می‌دانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.

    اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری می‌شوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.
    اصول طیف سنجی جرمی تصویر

    به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام می‌دهد:

    مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل می‌گردند. سپس یونها در یک میدان الکتریکی شتاب داده می‌شوند.

    یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا می‌گردند.

    یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار می‌گردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده می‌شوند. علامت یا نقشی که از ثبات حاصل می‌گردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.

    دستگاه طیف سنج جرمی

    هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیده‌تر از آن چیزی است که در بالا شرح داده شد.

    سیستم ورودی نمونه

    قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام می‌گیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده می‌شود. نمونه‌هایی که با طیف سنجی جرمی مورد مطالعه قرار می‌گیرند، می‌توانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.

    در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سیستم ورودی ساده‌ای می‌توان استفاده کرد. این سیستم تحت خلاء بوده، بطوری که محفظه یونیزاسیون در فشاری پایینتر از سیستم ورودی نمونه قرار دارد.

    روزنه مولکولی
    نمونه به انبار بزرگتری رفته که از آن ، مولکولهای بخار به محفظه یونیزاسیون می‌روند. برای اطمینان از اینکه جریان یکنواختی از مولکولها به محفظه یونیزاسیون وارد می‌شود، قبل از ورود ، بخار از میان سوراخ کوچکی که "روزنه مولکولی" خوانده می‌شود، عبور می‌کند. همین سیستم برای مایعات و جامدات فرار نیز بکار برده می‌شود. برای مواد با فراریت کم ، می‌توان سیستم را به گونه‌ای طراحی کرد که در یک اجاق یا تنور قرار گیرد تا در اثر گرم کردن نمونه ، فشار بخار بیشتری حاصل گردد. باید مراقب بود که حرارت زیاد باعث تخریب ماده نگردد.

    در مورد مواد جامد نسبتا غیر فرار ، روش مستقیمی را می‌توان بکار برد. نمونه در نوک میله‌ای قرار داده می‌شود و سپس از یک شیر خلاء ، وارد محفظه یونیزاسیون می‌گردد. نمونه در فاصله بسیار نزدیکی از پرتو یونیزه کننده الکترونها قرار می‌گیرد. سپس آن میله ، گرم شده و تولید بخاری از نمونه را کرده تا در مجاورت پرتو الکترونها بیرون رانده شوند. چنین سیستمی را می‌توان برای مطالعه نمونه‌ای از مولکولهایی که فشار بخار آنها در درجه حرارت اتاق کمتر از 9 - 10 میلیمتر جیوه است، بکار برد.

    محفظه یونیزاسیون
    هنگامی که جریان مولکولهای نمونه وارد محفظه یونیزاسیون گشت ، توسط پرتوی از الکترونهای پرانرژی بمباران می‌شود. در این فرآیند ، مولکولها به یونهای مربوطه تبدیل گشته و سپس در یک میدان الکتریکی شتاب داده می‌شوند. در محفظه یونیزاسیون پرتو الکترونهای پرانرژی از یک "سیم باریک" گرم شده ساطع می‌شوند. این سیم باریک تا چند هزار درجه سلسیوس گرم می‌شود. به هنگام کار در شرایطی معمولی ، الکترونها دارای انرژی معادل 70 میکرون - ولت هستند.

    این الکترونهای پرانرژی با مولکولهایی که از سیستم نمونه وارد شده‌اند، برخورد کرده و با برداشتن الکترون از آن مولکولها ، آنها را یونیزه کرده و به یونهای مثبت تبدیل می‌کنند. یک "صفحه دافع" که پتانسیل الکتریکی مثبتی دارد، یونهای جدید را به طرف دسته‌ای از "صفحات شتاب دهنده" هدایت می‌کند. اختلاف پتانسیل زیادی (حدود 1 تا 10 کیلو ولت) از این صفحات شتاب دهنده عبور داده می‌شود که این عمل ، پرتوی از یونهای مثبت سریع را تولید می‌کند. این یونها توسط یک یا چند "شکاف متمرکز کننده" به طرف یک پرتو یکنواخت هدایت می‌شوند.

    بسیاری از مولکولهای نمونه به هیچ وجه یونیزه نمی‌شوند. این مولکولها بطور مداوم توسط مکنده‌ها یا پمپهای خلا که به محفظه یونیزاسیون متصل نیستند، خارج می‌گردند. بعضی از این مولکولها از طریق جذب الکترون به یونهای منفی تبدیل می‌شوند. این یونهای منفی توسط صفحه دافع جذب می‌گردند. ممکن است که بخش کوچکی از یونهای تشکیل شده بیش از یک بار داشته باشند، (از دست دادن بیش از یک الکترون) اینها مانند یونهای مثبت تک ظرفیتی ، شتاب داده می‌شوند.

    پتانسیل یونیزاسیون
    انرژی لازم برای برداشتن یک الکترون از یک اتم یا مولکول ، پتانسیل یونیزاسیون آن است. بسیاری از ترکیبات آلی دارای پتانسیل یونیزاسیونی بین 8 تا 15 الکترون ولت هستند. اما اگر پرتو الکترونهایی که به مولکولها برخورد می‌کند، پتانسیلی معادل 50 تا 70 الکترون ولت نداشته باشد، قادر به ایجاد یونهای زیادی نخواهد بود. برای ایجاد یک طیف جرمی ، الکترونهایی با این میزان انرژی برای یونیزه کردن نمونه بکار برده می‌شوند.

    تجزیه گر جرمی
    پس از گذر کردن از محفظه یونیزاسیون ، پرتو یونها از درون یک ناحیه کوتاه فاقد میدان عبور می‌کند. سپس آن پرتو ، وارد "تجزیه گر جرمی" شده که در آنجا ، یونها بر حسب نسبت بار/جرم آنها جدا می‌شوند. انرژی جنبشی یک یون شتاب داده شده برابر است با:

    12mv2=ev

    که m جرم یون ، v سرعت یون ، e بار یون و V اختلاف پتانسیل صفحات شتاب دهنده یون است.

    در حضور یک میدان مغناطیسی ، یک ذره باردار مسیر منحنی شکلی را خواهد داشت. معادله‌ای که شعاع این مسیر منحنی شکل را نشان می‌دهد به صورت زیر است:

    (r =MV)/eH

    که r شعاع انحنای مسیر و H قدرت میدان مغناطیسی است.

    اگر این دو معادله را برای حذف عبارت سرعت ترکیب کنیم، خواهیم داشت:


    این معادله مهمی است که رفتار و عمل یک یون را در بخش تجزیه‌گر جرمی یک طیف سنج جرمی توجیه می‌کند.


    طیف سنج جرمی

    تجزیه گر جرمی و قدرت تفکیک تصویر
    از معادله فوق چنین بر می‌آید که هر قدر ، مقدار m/e بزرگتر باشد، شعاع انحنای مسیر نیز بزرگتر خواهد بود. لوله تجزیه‌گر دستگاه طوری ساخته شده است که دارای شعاع انحنای ثابتی است. ذره‌ای که نسبت m/e صحیحی داشته باشد، قادر خواهد بود تا طول لوله تجزیه‌گر منحنی شکل را طی کرده ، به آشکار کننده نمی‌رسند. مسلما اگر دستگاه ، یونهایی را که جرم بخصوصی دارند، نشان دهد. این روش چندان جالب نخواهد بود.

    بنابراین بطور مداوم ، ولتاژ شتاب دهنده یا قدرت میدان مغناطیسی تغییر یافته تا بتوان کلیه یونهایی که در محفظه یونیزاسیون تولید گشته‌اند را آشکار ساخت. اثری که از آشکار کننده حاصل می‌گردد، بصورت طرحی است که تعداد یونها را بر حسب مقدار m/e آنها رسم می‌کند. فاکتور مهمی که باید در یک طیف سنج جرمی در نظر گرفتن قدرت تفکیک آن است. قدرت تفکیک بر طبق رابطه زیر تعریف می‌شود:

    (R=M)/M

    که R قدرت تفکیک ، M جرم ذره و M∆ اختلاف جرم بین یک ذره با جرم M و ذره بعدی با جرم بیشتر است که می‌تواند توسط دستگاه تفکیک گردد. دستگاههایی که قدرت تفکیک ضعیفی دارند، مقدار R آنها حداکثر 2000 در بعضی مواقع قدرت تفکیکی به میزان پنج تا ده برابر مقدار فوق مورد نیاز است.

    آشکار کننده
    آشکار کننده بسیاری از دستگاهها ، شامل یک شمارشگر است که جریان تولیدی آن متناسب با تعداد یونهایی است که به آن برخورد می‌کند. با استفاده از مدارهای الکترون افزاینده می‌توان آن قدر دقیق این جریان را اندازه گرفت که جریان حاصل از برخورد فقط یک یون به آشکار کننده اندازه ‌گیری شود.

    ثبات آشکار کننده
    سیگنال تولید شده از آشکار کننده به یک ثبات داده می‌شود که این ثبات خود طیف جرمی را ایجاد می‌نماید. در دستگاههای جدید ، خروجی آشکار کننده از طریق یک سطح مشترک به رایانه متصل است. رایانه قادر به ذخیره اطلاعات بوده و خروجی را به هر دو صورت جدولی و گرافیکی در می‌آورد. دست آخر داده‌ها با طیفهای استاندارد ذخیره شده موجود در رایانه مقایسه می‌گردد.

    در دستگاهها قدیمیتر ، جریان الکترونی حاصل از آشکار کننده به یک سری از پنج گالوانومتر با حساسیتهای متفاوت داده می‌شود. پرتو نوری که به آینه‌های متصل به گالوانومترها برخورد می‌کند و به یک صفحه حساس به نور منعکس می‌گردد. بدین طریق یک طیف جرمی با پنج نقش بطور همزمان ، هر یک با حساسیتی متفاوت ایجاد می‌گردد. در حالی که هنوز دستگاه قویترین قله‌ها را در صفحه طیف نگاه می‌دارد، با استفاده از این پنج نقش ثبت ضعیفترین قله‌ها نیز ممکن می‌گردد.


    نظرات شما ()

  • اشعه کاتدی و نظریه اتمی

  • نویسنده : حمید رضا شاپورآبادی:: 86/8/7:: 8:35 صبح
    اشعه‌ی کاتدی چیست؟ جریان از این قرار است که در ساختار بلور فلزّات، به ازای هر اتم یک یا چند الکترون آزاد وجود دارد که تقریباً در همه‌ی نمونه‌ی فلزّی که می‌بینیم می‌تواند آزادانه حرکت کند. میزان انرژی لازم برای این که بشود این الکترونها را از فلز خارج کرد کم است و البتّه برای فلزّات مختلف متفاوت است. امّا به طور کلّی اگر شما یک قطعه فلز را داغ کنید، میلیاردها الکترون به راحتی انرژی لازم برای فرار کردن از ساختار بلوری فلز را به دست می‌آورند و از سطح آن جدا می‌شوند. فلزّاتی که انرژی لازم برای جدا کردن الکترون از آنها کمتر است، غالباً برای ساخت کاتد به کار می‌روند و جریانی که با گرم کردن آنها (کاتد گرم) یا انرژی دادن به آنها به روشهای دیگر (کاتد سرد) به دست می‌آید، جریان یا اشعه‌ی کاتدی نام دارد. اگر الآن این نوشته‌ها را روی یک مانیتور CRT می‌خوانید، در پشت صفحه‌ی مانیتور و دقیقاً روبه‌روی شما یک تفنگ الکترونی قرار دارد که الکترونها مورد نیازش را از طریق یک قطعه فلزّ کاتد فراهم می‌کند و بعد از جهت‌دهی آنها را به سمت صفحه می‌فرستد.

    اشعه کاتدی: ذرات الکترونی پر انرژی هستند که از کاتد حرارت دیده ساطع میشوند.
    از اشعه های یون زا برای استریل کردن وسائل و بسته های پلاستیکی مثل سرنگ ها و بوات های یکبار مصرف استفاده میشود.

     

    شناخت اشعه کاتدی

    طی آزمایشاتی که بر روی الکترولیز توسط فاراده Faraday انجام شد وی دو قانون معروف خود را به شرح زیر در سال ۱۸۳۰ میلادی منتشر نمود:
    ۱- در الکترولیز مقدار عنصر آزاد شده متناسب با مقدار جریان الکتریسته است.به عنوان مثال اگر ۱ فاراد یا ۹۶۵۰۰ کولن الکتریسته را ازمحلول نمک حاوی یون تک ظرفیتی جیوه عبور دهیم، ۱ مول اتم جیوه و اگر از محلول نمک حاوی یون دو ظرفیتی عبور دهیم ۰.۵ مول اتم جیوه ته نشین می شود. پس بسته هایی از الکتریسته وجود دارد که یک بسته از آن ها به سمت فلز تک ظرفیتی و دو بسته به سمت فلز دو ظرفیتی حرکت می کنند.
    ۲- هرگاه مقدار یکسان جریان الکتریسیته را از سه ظرف بگذرانیم که حاوی نمک ها با ظرفیت های متفاوت هستند، یعنی در ظرف اول نمک یک ظرفیتی، در ظرف دوم نمک دو ظرفیتی و در ظرف سوم نمک سه ظرفیتی داشته باشیم. رسوبهای فلز حاصل از عبور جریان الکتریسیته از ظروف متناسب با جرم اتمی فلز تقسیم بر ظرفیت عناصر آن می باشد.
    نتیجه: هر اتم مقداری ثابت بار می گیرد. اتم یک ظرفیتی یک بسته، اتم دو ظرفیتی دو بسته و اتم سه ظرفیتی سه بسته بار می تواند حمل نماید.و هرگز جزء کسری از بار الکتریکی مانند ۱.۲۳ را به خود نمی گیرند. این بسته برای تمام اتمها یکسان است، یعنی الکتریسته از بسته ها یا ذرات کوچکی تشکیل شده اند. که آنها را الکترون می گوییم.


    بعد از آزمایش الکترولیز بر روی مایعات و جامدات نوبت به الکترولیز گازها رسید که در الکترولیز گازها نتایج زیر به دست آمد:
    ۱- ولتاژ معمولی از گازها عبور نمی کند.
    ۲- در ولتاژهای بالا چنانچه فاصله دو الکترود زیاد باشد جریان الکتریسیته عبور نمی کند.
    ۳- در فشار معمولی به ازای هر سانتیمتر فاصله الکترودها به ۳۰۰۰۰ ولت اختلاف پتانسیل نیازمندیم.


    در جریان این آزمایش ها دانشمندان مجبور به ساختن لوله هایی از جنس شیشه شدند تا بتوانند فشار داخل آن را کاهش داده و به بررسی های مختلف بپردازند. بعد از ساخت این لوله ها دانشمندان به نتایج زیر دست یافتند:
    ۱- در فشار 0.1 اتمسفر اگر ولتاژ ۱۰۰۰۰ ولت برقرار شود، گاز درون لوله ملتهب شده و به رنگ های گوناگون پرتو افشانی می نماید. به عنوان مثال نئون رنگ قرمز، هوا رنگ صورتی ملایم، بخار سدیم رنگ زرد و بخار جیوه رنگ آبی مایل به سبز را ایجاد می نماید.



     

    ۲- در فشار کمتر از  0.0001 اتمسفر و ولتاژ بالای ۱۰۰۰۰ ولت جداره شیشه ملتهب شده و نور سبز مغز پسته از خود منتشر می نماید.



    ۳- با کم کردن فشار تا 0.000001 اتمسفر روشنایی از بین رفته و نوعی درخشندگی یا تابش مهتابی در دیواره لوله ایجاد می شود که در حضور صفحات فلوئور به طور کامل قابل مشاهده است.

    این اشعه که توسط ویلیام کروکس William Crookes کشف گردید به اشعه کاتدی معروف شد. اشعه کاتدی نیز به نوبه خود مورد مطالعه قرار گرفته و ویژگی های یکی پس از دیگری کشف گردید. به آزمایش های زیر و نتایج به دست آمده از آنها توجه کنید:
    ۱- برای اینکه ماهیت این اشعه هرچه بیشتر برای ما روشن گردد یک مانع بین دو الکترود در لوله قرار می دهیم.
    همانطور که مشاهده می شود ، در سمت آند سایه ای تشکیل می شود و این بدان معناست که اشعه از کاتد خارج شده و به سمت آند حرکت می کند. همچنین می توان نتیجه گرفت که این اشعه به خط مستقیم سیر می کند.

     



    ۲- جابجایی کاتد در لوله تأثیری در جهت اشعه نداشته و اشعه به خط مستقیم سیر می نماید.


     


    به محل قرار گرفتن آند توجه کنید.

    ۳- جنس کاتد را تغییر می دهیم ولی در اشعه هیچ تغییری مشاهداه نمی شود. بنابراین ماهیت اشعه به جنس کاتد بستگی ندارد و تمام فلزات توان تولید این اشعه را دارند.
    ۴- جنس گاز داخل لوله را تغییر می دهیم ولی باز در ماهیت اشعه تغییری مشاهده نمی شود. بنابراین ماهیت اشعه به جنس گاز داخل لوله بستگی ندارد.
    ۵- یک فرفره پره دار را در مسیر اشعه قرار می دهیم.
    مشاهده می شود که مدتی پس از شروع به کار دستگاه فرفره شروع به حرکت می نماید. این مطلب نشان دهنده آن است که اشعه کاتدی حامل ذراتی است که دارای انرژی هستند. این ذرات پس از برخورد با پره های فرفره انرژی خود را به پره ها می دهند به همین دلیل پره ها گرم شده و باعث گرم شدن گاز اطراف خود می شوند. گاز گرم شده درون لوله توسط جریان همرفتی به حرکت درآمده و باعث چرخش فرفره می گردد.

     


    ۶- یک میدان الکتریکی قوی را از خارج لوله بر اشعه اثر می دهیم.

    همانطور که مشاهده می شود، اشعه در میدان الکتریکی به سمت قطب مثبت منحرف می شود. یعنی اینکه دارای بار منفی است.

    ۷- از خارج از لوله یک میدان مغناطیسی را بر اشعه اثر می دهیم.

    اشعه در راستای عمود بر میدان در جهتی منحرف می شود که از بار ذرات دارای بار منفی انتظار می رود. بنابراین اشعه از جنس ذرات باردارمی باشد.

    بنابراین با توجه به آزمایشات فوق داریم:

    ۱- اشعه کاتدی از ذراتی که دارای بار منفی هستند تشکیل شده است. این ذرات را در سال ۱۸۷۴ الکترین نامیدند که در سال ۱۸۹۱ بعد از آزمایشات فوق این نام به الکترون تغییریافت.
    ۲- این اشعه به نوع فلز کاتد یا گاز داخل لوله بشتگی نداردُ بنابراین تمام مواد دارای الکترون هستند.
    بعدها از اشعه کاتدی در ساخت تلویزیون ها و مانیتورها استفاده شد، ساخت این تجهیزات شاید بدون اشعه کاتدی میسر نمی شد. به صفحه نمایش مانیتورها و تلویزیون هایی با استفاده از اشعه کاتدی تصویر را ایجاد می نمایند بطور اختصاری CRT گفته می شود که مخفف Cathode Ray Tube می باشد. در شکل نحوه عملکرد این نمایشگرها را می بینید.

    با توجه به اینکه آزمایشات فوق نشان دهنده وجود ذره ای کوچکتر از اتم با بار منفی هستند، بنابراین نظریه اتمی دالتون به چالش بزرگی کشانده شده است، اما در علم برای اثبات وجود یک ذره باید مختصات آن ذره یعنی جرم و مقدار بار آن تعیین گردد.


    نظرات شما ()

       1   2      >

  • لیست کل یادداشت های این وبلاگ

    بهترین کدهای آهنگ در آوای شمال